Stress	System Response	Effect on the Equilibrium Constant
Increase in	The system shifts to	It changes because the equilibrium position shifts
temperature	use up the added heat,	without any substances being added or removed.
	favoring the	There is no heat related term in the mass action
	endothermic reaction.	expression to maintain the ratio.
Decrease in	The system shifts to	It changes because the equilibrium position shifts
temperature	produce more heat,	without any substances being added or removed.
	favoring the	There is no heat related term in the mass action
	exothermic reaction.	expression to maintain the ratio.
Increase in	The system shifts to	It does not change, because all reactant and
volume	the side with the most	product concentrations change, resulting in the
(decrease in	gas particles, because	same ratio.
pressure)	solids and liquids are	
	incompressible.	
Decrease in	The system shifts to	It does not change, because all reactant and
volume	the side with the	product concentrations change, resulting in the
(increase in	fewest gas particles,	same ratio.
pressure)	because solids and	
	liquids are	
	incompressible.	
Increase in	The system shifts to	It does not change, because all reactant and
concentration	decrease the reactant	product concentrations change, resulting in the
	or product that was	same ratio.
	added.	
Decrease in	The system shifts to	It does not change, because all reactant and
concentration	increase the reactant	product concentrations change, resulting in the
	or product that was	same ratio.
	removed.	
Addition of a	No change. Catalysts	It does not change.
catalyst	increase the forward	
	and reverse reactions	
	to the same extent, so	
	that they only serve to	
	help bring systems to	
	equilibrium faster.	
Addition of an	No change, because it	It does not change.
inert gas	doesn't take part in	
	the reaction	

Le Châtelier's Principle